Learn how to use AgentOS through practical examples
Create and run your first AI agent with a simple task.
name: my_first_agent
model_provider: github
model_version: openai/gpt-4o-mini
isolated: false
agentos run agent.yaml --task "create a Python script that prints 'Hello, World!'"
✓ Agent 'my_first_agent' started
✓ Task received: create a Python script that prints 'Hello, World!'
✓ Creating file: hello.py
# Generated hello.py:
print("Hello, World!")
✓ Task completed successfully
Start an interactive conversation with different LLM providers.
# Chat with GitHub Models (default)
agentos chat --provider github
# Requires: GIT_HUB_TOKEN environment variable
# Chat with Claude 3.5
agentos chat --provider claude --temperature 0.5
# Requires: CLAUDE_API_KEY environment variable
# Chat with local Ollama (no API key needed!)
agentos chat --provider ollama
# Make sure Ollama is running locally
# Install from: https://ollama.ai
An agent specialized in generating Python code with custom restrictions.
name: code_generator
model_provider: openai
model_version: gpt-4
isolated: false
DESTRUCTIVE_COMMANDS:
- rm
- rmdir
- sudo
- chmod
- chown
- kill
# Generate a REST API
agentos run code_generator.yaml --task "create a Flask REST API with CRUD operations for a todo list"
# Generate a CLI tool
agentos run code_generator.yaml --task "create a Python CLI tool for converting CSV to JSON"
# Generate tests
agentos run code_generator.yaml --task "create pytest unit tests for the todo API"
An agent for research and analysis tasks with Claude's advanced reasoning.
name: research_assistant
model_provider: claude
model_version: claude-3-5-sonnet
isolated: true
DESTRUCTIVE_COMMANDS:
- rm
- sudo
- rmdir
- dd
- mkfs
# Research and summarize
agentos run research_agent.yaml --task "analyze the Python files in ./src and create a summary of the code architecture"
# Data analysis
agentos run research_agent.yaml --task "read data.csv and create a statistical analysis report"
Maximum security configuration with Docker isolation enabled.
name: secure_agent
model_provider: github
model_version: openai/gpt-4o-mini
isolated: true
DESTRUCTIVE_COMMANDS:
- rm
- rmdir
- sudo
- su
- dd
- mkfs
- fdisk
- format
- kill
- killall
- pkill
- chmod
- chown
- wget
- curl
# Ensure Docker is running
docker ps
# Run secure agent
agentos run secure_agent.yaml --task "process untrusted input safely" --timeout 60
When isolated: true is set, Docker must be
running on your system.
Use different providers for different tasks in a workflow.
#!/bin/bash
# Step 1: Generate code with GPT-4
agentos run gpt4_agent.yaml --task "create a Python web scraper for news headlines"
# Step 2: Review code with Claude
agentos run claude_agent.yaml --task "review scraper.py for security issues and best practices"
# Step 3: Generate tests with Gemini
agentos run gemini_agent.yaml --task "create comprehensive tests for scraper.py"
echo "Workflow complete!"
What people are building with AgentOS
Automatically generate boilerplate code, APIs, and utilities
Analyze code and find issues with AI assistance
Generate documentation from code automatically
Create unit tests and integration tests
Automated code review and suggestions
Automate repetitive development tasks
Download AgentOS and start building AI agents today